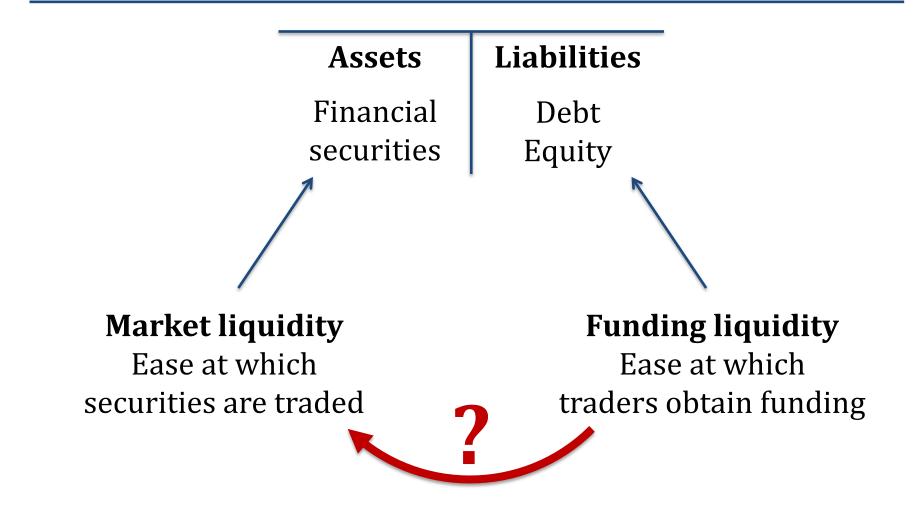
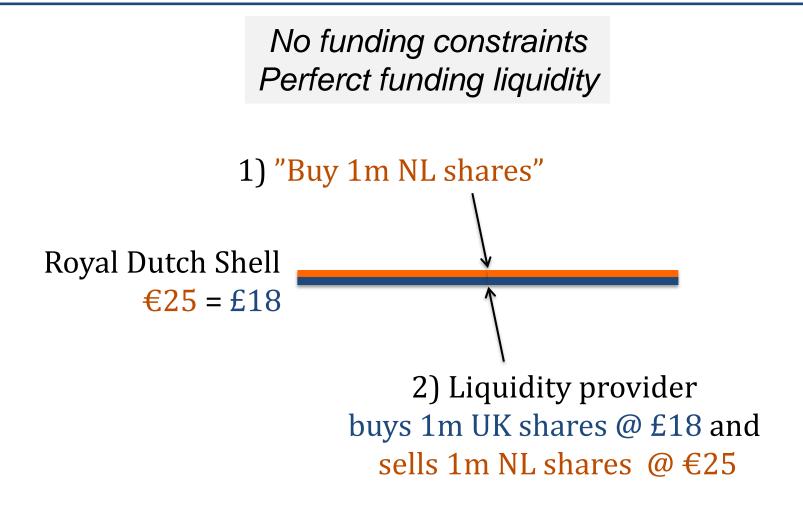
Does Funding Liquidity Cause Market Liquidity? Evidence from a Quasi-experiment Petri Jylha Imperial College London

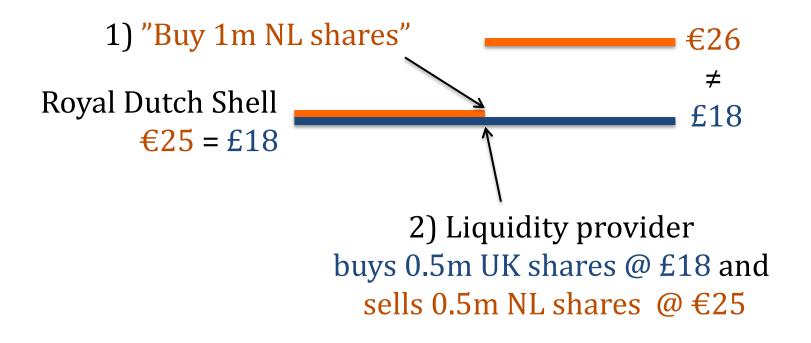
© Imperial College Business School


Does funding liquidity cause market liquidity?
 – YES!

Agenda

- Motivation of research question
- Research methodology
- Empirical results
- Conclusions


Funding liquidity and market liquidity


- Gromb & Vayanos (2002, JFE) and Brunnermeier & Pedersen (2009, RFS)
- Funding constraints (insufficient funding liquidity) prevent traders from providing full liquidity to financial markets
- Improvement in funding liquidity → increase in traders' positions → improvement in market liquidity
- Causal effect of funding liquidity on market liquidity

Theory Illustration

Theory Illustration

Some funding constraints Imperferct funding liquidity

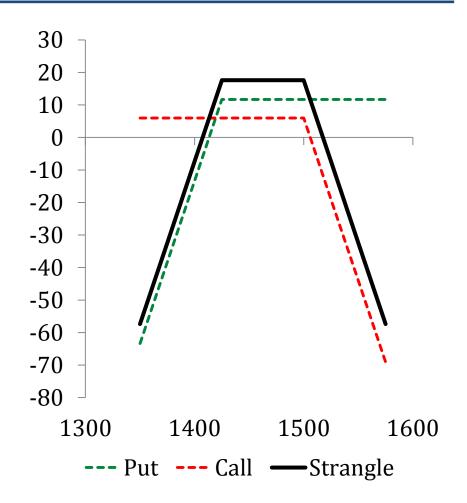
Testing theories

- Causal effect of funding liquidity on market liquidity
- Difficult to test
 - Measuring funding liquidity difficult
 - Correlation \neq causation
 - Common determinant
 - Direction of causality
- Solution
 - Find exogenous funding liquidity shock
 - Measure market liquidity effect of this funding liquidity shock

Funding liquidity shock

- Approval of "portfolio margining" of listed index options by SEC on July 14, 2005
- Significant reduction of margin requirement (improvement in funding liquidity) for index options
- No effect on margin requirement for (single-name) equity options

Margining of written options Strategy-based margin


- Individual written option
 - Call: $C_t + 0.15 \times S_t + \max(S_t K, 0)$
 - Put: $P_t + 0.15 \times S_t + \max(K S_t, 0)$
- Pre-determined strategies (straddle, box spread, collar, ...)
 - Some combination of components (e.g. maximum)
 - Similar formula
- Problem
 - OTM options especially expensive to write
 - Limited number of pre-determined strategies
 - High margin requirement for complex low-risk portfolios
 - Ignores mechanical correlations

Margining of written options Portfolio margin

- Based on portfolio scenario analysis
- Shock underlying asset
 - -8%,...,+6% for index underlying
 - 15%,...,+15% for stock underlying
- Calculate total portfolio P&L for each scenario
- Margin requirement = maximum portfolio loss
- For index option portfolios, portfolio margin is on average 28% of strategy-based margin
- Significant improvement in funding liquidity
- Fully icorporates mechanical correlations

Margin example Short strangle

- Price of underlying \$1451
- Write 1425-put @ \$11.66 and 1500-call @ \$5.96
- Margins
 - Separately: \$19.15 (put) + \$16.89 (call) = \$36.04
 - Strategy-based: \$19.15
 - Portfolio: **\$6.70**
 - 35% of strategy-based margin

Identification strategy

- Analyse option liquidity around portfolio margining approval
- Compare changes in index option liquidity to changes in equity option liquidity
- Equity options provide control (placebo) group to eliminate effect of market-wide liquidity changes

Regression setup

 $Liq_{i,t} = \beta_0 + \beta_1 \times Index_i \times After_t + \beta_2 \times Index_i + \beta_3 \times After_t$

- $Liq_{i,t}$: option liquidity measure for underlying *i* on day *t*
- *Index*_{*i*}: 1 for index options and 0 for equity options
- *After_t*: 1 after 14/7/2005 and 0 before

Regression setup

 $Liq_{i,t} = \beta_0 + \beta_1 \times Index_i \times After_t + \beta_2 \times Index_i + \beta_3 \times After_t$

Average level of liquidity

	Before	After	Difference
Equity	eta_0	$\beta_0 + \beta_3$	β_3
Index	$\beta_0 + \beta_2$	$\beta_0+\beta_1+\beta_2+\beta_3$	$\beta_1 + \beta_3$
Difference	β_2	$\beta_1 + \beta_2$	β_1

Coefficient of interest
Difference-in-difference

Imperial College London BUSINESS SCHOOL TO econometricians in audience

- Additional controls
 - Lagged implied volatility, lagged return of underlying, lagged squared return of underlying, last-day-of-trading (3rd Friday) dummy, time and underlying fixed effects
- Standard errors clustered by time
 - No two-way clustering as liquidity measures aggregated by underlying and day

- Daily option price data from OptionMetrics database
- Options traded on CBOE
- 5 index options (S&P 100 and 500, Dow Jones, Nasdaq 100, and Russell 2000)
- 30 most traded equity options
- 200-day estimation window around event
 - From 18/2/2005 to 2/12/2005

Liquidity measures

- Trading volume
- Bid-ask spread \rightarrow direct trading cost
- Price impact \rightarrow indirect trading cost

Effect on trading volume

- Contract volume ↑ 18 %
 - Effect comes mainly from OTM options
- Dollar volume $\uparrow 8\%$
 - OTM options' dollar volume ↑ 20 %
- Contract volume increase > dollar volume increase
 - Trading moves towards cheaper options
 - Moneyness of traded options $\boldsymbol{\rm V}$
 - More trading in previously illiquid OTM options

Effect on bid-ask spread

- Bid-ask spread \checkmark 101bps
 - 12% of pre-event average (812bps)
 - Effect stronger for OTM options
- Significant reduction in direct trading costs

Effect on price impact

- Price impact answers question "How much option prices move from \$1m of trading?"
- Price impact measures $\sqrt{22\%}$ 33%
- Significant reduction in indirect trading costs

Market efficiency

- Market liquidity improvement is nice, what about market efficiency?
- Difficult to measure changes in market efficiency over single event
- Solution: dispersion of option price implied volatility) changes for one underlying during one day
- Efficient markets: prices reflect fundamentals well → implied volatilities moe in tandem → dispersion low
- Inefficient markets: prices reflect fundamentals poorly → implied volatilities move by transitory supply/demand shocks → dispersion high

Effect on market efficiency

- Dispersion of implied volatility change ↓
 → Market efficiency ↑
- Effect stronger for OTM options
- Significant improvement in market efficiency
 - Especially for previously illiquid OTM options

Conclusion

- Funding liquidity improvement → market liquidity and market efficiency improvements
 - Especially for illiquid securities
- Causal evidence in support of theories of Gromb & Vayanos (2002) and Brunnermeier & Pedersen (2009)
- Take-aways
 - Theories work
 - Margin regulation changes can be used to study effects of funding liquidity
 - Margin requirements have dark side: higher margin requirement results in less liquid and less efficient markets